
Java Native Interface in OS/2

Jarda Kačer
jkacer@kiv.zcu.cz

Czech Warpstock 2004,
Pec pod Sněžkou, CZ

2004-06-27

Presentation Outline

● Reasons to Use JNI
● Technology Overview
● “Hello Warpstock” Tutorial
● OS/2 JNI Issues and Solutions
● Java Types vs. C Types
● Calling Java Code Back from C Code
● Accessing Fields
● Results
● Links and Resources

Reasons to Use JNI

● A feature you need is not available in Java
● You already have your application written in

another language and need to call it from
Java

● A piece of time-critical code with properties
that Java is not able to guarantee

Technology Overview (1)

● JNI = A “glue” between Java code and
external libraries (written mainly in C or C++)

● Two types of calls:
– From Java to a library
– From a library back to Java

● The library format is platform-dependent
– DLL on OS/2 and Win, so on Linux and Solaris

● On the library side, you can work with:
– Objects
– Classes
– Exceptions
– Threads

Technology Overview (2)

Hello Warpstock Tutorial (1)

● A Hello-World-like Java program that uses
JNI to call a function in OS/2 DLL

● The function prints out “Hello Czech
Warpstock 2004!”

● Developed with Golden Code Java 1.4.1 and
Open Watcom 1.2

● Based on Java Tutorial, JNI trail

Hello Warpstock Tutorial (2)

● Steps:
1.Write MyClass.java
2.Compile MyClass.java to MyClass.class
3.Generate header file MyClass.h
4.Write implementation of native functions to

MyClassImpl.c
5.Compile MyClassImpl.c to HelloLib.dll
6.Run MyClass.class

Hello Warpstock Tutorial (3)

Step 1: Write MyClass.java
class HelloWarpstock
{
 public native void sayHello();

 static
 {
 // Load HelloLib.DLL
 // Max 8 characters !!!
 System.loadLibrary("HelloLib");
 } // static

 public static void main(String[] args)
 {
 HelloWarpstock hw;

 hw = new HelloWarpstock();
 hw.sayHello();
 } // main
} // class HelloWarpstock

Hello Warpstock Tutorial (4)

Step 2: Compile MyClass.java into
MyClass.class

javac MyClass.java

Hello Warpstock Tutorial (5)

Step 3: Generate header file MyClass.h

javah -jni MyClass.java
#include <jni.h>
#ifndef _Included_HelloWarpstock
#define _Included_HelloWarpstock

#ifdef __cplusplus
extern "C" {
#endif
JNIEXPORT void __export JNICALL Java_HelloWarpstock_sayHello
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

Hello Warpstock Tutorial (6)

Step 4: Write implementation of native
functions into MyClassImpl.c

#include <jni.h>
#include "HelloWarpstock.h"
#include <stdio.h>

JNIEXPORT void __export JNICALL
Java_HelloWarpstock_sayHello(JNIEnv *env, jobject obj)
{
 printf("Hello Czech Warpstock 2004!\n");
 return;
}

Hello Warpstock Tutorial (7)

Step 5: Compile MyClassImpl.c into
HelloLib.dll

A complicated task, see the OS/2 issues later.

wmake

It actually does both compilation into
MyClassImpl.c and linking into HelloLib.dll

See makefile and LinkOptions.lnk

Hello Warpstock Tutorial (8)

Step 6: Run MyClass.class

java MyClass

OS/2 JNI Issues and Solutions

● The DLL's name must fit into 8+3 letters!
– You will get UnsatisfiedLinkerError + Error 123 in

GC Java if it does not, similarly in InnoTek Java
– OS/2 limitation

● Functions must be exported from the DLL!
– JNIEXPORT should do it, but doesn't
– Always check jni_md.h in Java\include\os2
– Solution for OpenWatcom: Add __export by

hand after return type (2 underscores)
● Functions will be called by the system

– _System is OK for OW (expanded from
JNICALL)

Java Types vs. C Types

● Java types cannot be used directly in C code
● Mapping stored in jni.h in your Java

distribution
● Different types for C and C++
● Two kinds of type:

– Primitive types
– Objects

Primitive Types

● boolean – jboolean
● byte – jbyte
● char – jchar
● short – jshort
● int – jint
● long – jlong
● float – jfloat
● double – jdouble
● void – void

Objects (1)

● Object – jobject, root of everything
● String – jstring
● Class – jclass
● Trowable – jtrowable
● [] <type> – j<type>Array
● Every function get JNIEnv* and jobject:

– JNIEnv* env: env is a pointer to the Java
environment, cannot be shared among different
threads

– jobject this: this is a pointer to the instance that
invoked the method

Objects (2)

Working with Strings

● GetStringChars takes the Java string and
returns a pointer to an array of Unicode
characters

● ReleaseStringChars releases the pointer to
the array of Unicode characters

● NewString constructs a new java.lang.String
from an array of Unicode characters

● GetStringLength returns the length of a string
that is comprised of an array of Unicode
characters

● GetStringUTFLength returns the length of a
string if it is represented in the UTF-8 format

Working with Arrays

● Get<type>ArrayElements returns the
elements and pins down the array

● Release<type>ArrayElements unpins the
memory

● Get/Set<type>ArrayRegion
● GetObjectArrayElement
● SetObjectArrayElement

Calling Java Code

● jclass GetObjectClass(env, obj);
● jmethodID GetMethodID(env, cls, "name",

"signature");
– Signature is important, methods can be

overloaded
● CallVoidMethod(env, obj, mid, params);
● Call<type>Method(env, obj, mid, params);
● Similarly for static methods
● Example later

Method Signatures

● (argument-types)return-type
● Z – boolean
● B – byte
● C – char
● S – short
● I – int
● J – long
● F – float
● D – double
● Lfully-qualified-class – fully-qualified-class
● [type – type[]

Calling Java Code Example
JNIEXPORT void JNICALL
Java_Callbacks_nativeMethod(JNIEnv *env, jobject obj, jint depth)
{
 jclass cls = (*env)->GetObjectClass(env, obj);
 jmethodID mid = (*env)->GetMethodID(env, cls, "callback", "(I)V");
 if (mid == 0)
 {
 return;
 }
 printf("In C, depth = %d, about to enter Java\n", depth);
 (*env)->CallVoidMethod(env, obj, mid, depth);
 printf("In C, depth = %d, back from Java\n", depth);
}

Accessing Fields

● Two steps: First get its ID, then its value
● Get ID:

– GetStaticFieldID(env, cls, "name", "signature");
– GetFieldID(env, cls, "name", "signature");

● Get value:
– GetStatic<type>Field(env, cls, fid);
– Get<type>Field(env, obj, fid);

● Signatures are the same as when calling
methods

● If unsure, run javap -s -p MyClass

JNI and Multithreading

● Synchronization must be supported in JNI
● MonitorEnter(env, obj);
● MonitorExit(env, obj);
● wait(), notify(), notifyAll(): Not directly

supported, can be performed via method
calls, as any other method

What We Did Not Talk About

● Exception throwing, catching, handling
● The problem of local and global references,

their scope of validity
● JNI and C++
● Invoking the JVM, attaching native threads

Results

● You will not probably need to use JNI for
ordinary applications

● JNI may come in handy in special cases
● It's good to know the tricks on OS/2
● No fear, it's just a little bit more difficult than

ordinary C programming :-)

Links and Resources
● http://java.sun.com/docs/books/tutorial/native1.1/index.html
● http://java.sun.com/j2se/1.4.2/docs/guide/jni/
● http://java.sun.com/developer/codesamples/jni.html
● http://java.sun.com/docs/books/jni/
● http://home.t-online.de/home/howlingmad/watcom_tip_en.html
● See the screenshots

