
A Brief Introduction to OS/2
Multithreading

Jaroslav Kaƒer

jkacer@kiv.zcu.cz

University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Why Use Parallelism?

❑ Performance increase

❑ Distributed computing

❑ OS/2: Usually 1 processor

❑ But useful too: Pretended performance increase
has a big influence on user's comfort

Job vs. Program

❑ Job:

❑ Dynamic structure: processes, threads, ...

❑ Activity

❑ Has a state

❑ Program:

❑ Static structure: procedures + shared data declaration

❑ Just a description - "template" for a job

Working with Data

❑ Local data

❑ Accessible by one process/thread only

❑ No problems

❑ Global (shared) data

❑ Accessed by more processes

❑ Need to protect them ⇒ Process synchronization

Global (Shared) Data

❑ Independent - Access without synchronization

❑ Dependent - Acces with synchronization

❑ Locked variables

❑ Reduction variables

❑ Ordered variables

Process Synchronization

❑ Semaphores and locks

❑ Semaphores: Passive waiting

❑ Locks: Active waiting

❑ OS/2 API, POSIX

❑ Monitors

❑ Monitor procedures

❑ Java, ADA

Architectures

❑ Shared memory

❑ Symmetric multiprocessors (OS/2)

❑ Assymetric multiprocessors

❑ Distributed memory

❑ Communication network

❑ PVM, MPI, etc.

Realization of Parallel Processes

❑ Independent jobs of an OS (Coarse grain)

❑ Distributed memory systems

❑ Message passing

❑ Threads (Fine grain)

❑ Shared memory systems (OS/2)

❑ Co-routines

❑ Pseudo-parallelism

A Process Has:

❑ Program

❑ Local data

❑ State

❑ Local data values

❑ Values of processor registers

❑ Stack

❑ A point in its program

Process Control

❑ Time slices

❑ Preemtive multitasking

❑ Priorities

❑ Control of Co-routines

Parallelism Entities in OS/2

❑ Sessions

❑ Processes

❑ Containers for threads and resources, PID

❑ At least one thread

❑ Threads

❑ Get processor time

❑ Priority class + level, TID

❑ System limit: 4096, THREADS

Processes

❑ DosExecPgm()

❑ DosKillProcess()

❑ KILLPROCESS exception

❑ DosSetExceptionHandler()

❑ DosExit()

❑ DosWaitChild()

Sessions

❑ 5 types

❑ DosStartSession()

❑ DosStopSession()

❑ DosSelectSession()

❑ DosSetSession()

❑ STARTDATA

❑ DosQueryAppType()

OS/2 Scheduler

❑ 4 priority classes

❑ Time-critical, server, regular, idle-time

❑ 32 levels within a class

❑ Boosting

❑ Foreground boost

❑ I/O boost

❑ Starvation boost

OS/2 API for Multithreading

❑ #define INCL_DOS

❑ #include <os2.h>

❑ gcc switch: -Zmt

❑ Open Watcom switch: -bm

Thread Creation

❑ DosCreateThread()

❑ VOID APIENTRY fnThread(ULONG ulArgs)

❑ _beginthread()

❑ void *thread(void *args)

❑ _endthread()

Other API

❑ DosExit()

❑ DosSetPriority()

❑ DosSuspendThread()

❑ DosResumeThread()

❑ DosKillThread()

❑ DosWaitThread()

❑ DosSleep()

Critical Section

❑ Atomicity of operations inside a CS

❑ Protection of shared data

❑ No switching inside a CS

❑ DosEnterCritSec()

❑ DosExitCritSec()

❑ Dangerous! ⇒ No semaphores inside a CS!

Mutex Semaphores

❑ Protection of shared data

❑ "Mutual Exclusion"

❑ Only 1 thread can acquire a mutex

❑ Others are blocked

❑ "Opening and closing brackets" of protected
code

A Problem

❑ 2 (or more) threads, a shared variable, local
variables i

1.int i;

2.read(i);

3.i = i+1;

4.write(i);

❑ Result: unpredictable (1 or 2)

A Solution

1. int i;

2. mutex m;

3. mutex_lock(m);

4. read(i);

5. i = i+1;

6. write(i);

7. mutex_unlock(m);

OS/2 API for Mutex Manipulation

❑ DosCreateMutexSem()

❑ DosOpenMutexSem()

❑ DosCloseMutexSem()

❑ DosQueryMutexSem()

❑ DosRequestMutexSem() /
WinRequestMutexSem()

❑ DosReleaseMutexSem()

Event Semaphores

❑ 2 (or more) threads

❑ One waiting for an event to happen (blocked)

❑ The other signal the event to the first one

❑ The first one is restarted

❑ Analogy of traffic lights

OS/2 API for Event-Semaphores
Manipulation

❑ DosCreateEventSem()

❑ DosOpenEventSem()

❑ DosCloseEventSem()

❑ DosQueryEventSem()

❑ DosResetEventSem()

❑ DosPostEventSem()

❑ DosWaitEventSem() / WinWaitEventSem()

Mux-Wait Semaphores

❑ A bundle of mutex and event semaphores

❑ Adding / removing to / from a mux-wait

❑ Similar API +

❑ DosAddMuxWaitSem()

❑ DosDeleteMuxWaitSem()

Dining Philosophers

❑ E. Dijkstra, 1970s

❑ Round table

❑ N philosophers eating spaghetti and thinking

❑ N forks

❑ A philosopher must get both forks before eating

Dining Philosophers
0

1

23

4

0

1

2

3

4 *

*

*

Deadlock Possible

❑ First left fork, then right fork

❑ Everybody has his left fork

❑ Nobody has his right fork

❑ Nobody can release his left fork

❑ Everybody blocked forever

A Deadlock Occures When:

❑ Shared resouces

❑ One resource can be given to at most one process

❑ A process waits indefinitely for a resource

❑ Only the process having a resource can release it

❑ Cyclic dependency

❑ P1 has R1 and wants R2, and

❑ P2 has R2 and wants R3, and ...

❑ Pn has Rn and wants R1.

Solutions

❑ Detection methods

❑ Allocation graph

❑ Banker's algorithm

❑ Protection methods

❑ E.g. Different priorities of shared resources

❑ Processes must allocate resources in ascending order

❑ Sufficient for DP: 2 priorities only

OS/2 API Solution

❑ Arrays of forks and philosophers

❑ A fork holds info about its owner, protected with
a mutex semaphore

❑ Every philosopher knows his left, right, first and
second fork

❑ A philosopher's life = a thread

❑ A philosopher must acquire both mutexes,
possibly blocked

POSIX Threads Solution (1)

❑ Almost the same as the OS/2 solution

❑ Different types

❑ pthread_t

❑ pthread_mutex_t

❑ pthread_cond_t

POSIX Threads Solution (2)

❑ Different functions

❑ pthread_create(), pthread_mutex_init(),
pthread_mutex_destroy(), pthread_cond_init(),
pthread_cond_destroy()

❑ pthread_mutex_lock(), pthread_mutex_unlock()

❑ pthread_cond_wait(), pthread_cond_signal()

Java Solution (1)

❑ Object oriented: classes Fork and Philosopher

❑ Java threads

❑ Monitors - no semaphores, no manual waiting

❑ Object references, no arrays and indices

❑ Easy, short, elegant

Java Solution (2)

❑ A fork:

❑ Monitor methods acquireFork() and releaseFork()

❑ About 5 lines of code each

❑ synchronized, wait(), notify()

Java Solution (3)

❑ A philosopher:

❑ A thread - class Philosopher extends Thread

❑ Method run() overridden

❑ No care about locking - done in the Fork class

❑ Just calls acquireFork() and releaseFork() of both
forks

Where to Get It

❑ http://home.zcu.cz/~jkacer/cz/os2

❑ http://www.os2.cz/warpstock (Paper only)

❑ Czech Warpstock 2002 CD

Thank You!

